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Abstract
We consider how to apply the preconditioned conjugate gradient process to
generate feasible iterates for large-scale nonlinear minimization in the presence of
linear constraints, including non-negativity conditions. A new and useful viewpoint
is proffered; important computational linear algebra issues are discussed.

1 Introduction

We are concerned with using preconditioned conjugate gradient (PCG) technology to solve
continuous large-scale minimization problems with linear constraints. Qur objective in this
note is to consider the use of projected PCG techniques, whilst generating feasible iterates,
and highlight some important linear algebra issues; we do not present complete optimization
algorithms in this missive.

An alternative approach, based on an indefinite iterative scheme applied to the
optimality conditions, is given in [10]. Our approach is different: we are concerned with
the direct application of the PCG process to the linearly constrained setting.

We consider two situations. First, we examine the nonlinear minimization problem with
linear equality constraints,

(1) min{ f(z) : Az = b},
where A is an m-by-n matrix of rank m, and f : R* — R is twice continuously-differentiable.
Our second problem adds non-negativity constraints to (1):

(2) min{f(z): Az = b, z > 0}.

We illustrate how the ideas we develop for problem (1) can also be applied to (2) with an
appropriate class of preconditioners (within the context of an interior Newton method).

We begin with a cursory glance at the unconstrained problem. Superlinear methods
for solving large-scale unconstrained minimization problems can be obtained by applying
PCG to the linear (Newton) system

(3) Higp = —gi,
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in each iteration k, where Hy = V2f(z1), and g = V f(zx). PCG iterations can be applied
to (3), always “improving” p until the residual, Hxp + gk, is sufficiently small or until a
direction, d, of non-positive curvature is discovered, i.e., dTH,d < 0. In the latter case d
can be used to help further decrease the objective function f, e.g., Steihaug [12].

In algorithm PCG below, initialize scalar § = 0; initialize vectors r = —gi, p = 0,
d_ = 0, and z = Pi(r). The function P is the preconditioning operation; typically,
this involves a (sparse) symmetric positive definite matriz Cy approzimating H, and the
solution of the system: Crz = 7.

Algorithm PCG
While ||z|] is not “small enough”
l.d=z+pd_ ,v=d Hyd
2. if vy €0 , return(p,d)
elsea:z—?- ,p=p+oad,r=r—caHid, end

3. 2= Py(r)
4. 8= .,;.:
return(p)

The notation v_, where v is a vector, refers to the value of v in the previous PCG iteration.

2 Linear Constraints

How can Algorithm PCG be adapted to problem (1)? In principle thereisa straightforward
answer. Assume zj is feasible. Let the columns of a matrix Z € gnx(r=m) form a basis for
the null space of A and, using PCG, (approximately) solve the reduced system,

(4) (ZTHZ)p = -2 gk

and then assign p = Zp. Algorithm PCG can be directly applied to (4) by identifying Hy
and gx in Algorithm PCG with ZTH:Z and Z7 g, in (4) respectively. Despite the apparent
simplicity of this approach, there are problems when applied in the large-scale setting.

First, is the reduced matrix Z7 H;Z formed explicitly? If so, it is imperative that both
Z and ZT H,Z be sparse when n — m is large. The problem of finding a sparse null basis Z
has been studied with some success, e.g., [4, 9]; however, the problem of determining a basis
Z for the null space of A where both Z and ZT HZ are sparse is unchartered territory.
Moreover, we expect it is unlikely that a good general purpose strategy is possible, though
certainly problems with cooperative sparsity structures will be amenable to this approach.

Second, if the reduced matrix ZTH,Z is not formed, two concerns remain. There is
still the requirement that a sparse (or low-storage) null basis Z be determined, and how do
we precondition system (4) when the matrix elements are not accessible? Nash and Sofer
[11] make some preconditioning suggestions based on an approximation to (4). However, it
is clear that preconditioning strategies that require sparsity and direct access to the matrix
elements are not viable in this situation.

We can circumvent these problems with an elegant and general solution. Let Cj be a
positive definite approximation to the current Hessian matrix Hj, where C) is “suitably
sparse”. Then algorithm PCG can be used to solve (4) provided z = Pk(r) is defined by
the augmented system:

(5 4)(2)-(:)
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We call this method the Projected Preconditioned Conjugate Gradient (PPCG) algorithm.

The structure of system (5) allows for three basic solution techniques. We discuss each
in turn. Each approach involves a different factorization: it is important to realize, in the
context of Algorithm PPCG, that the factorization is done just once for each (outer) index
k. Subsequent PPCG iterations, within a fixed major iteration k, will involve only the
solution of triangular systems.

A Full-Space Approach: This approach is the least restrictive with regard to the choice of
Ck- The idea is to merely treat (5) as a sparse symmetric system and use a general sparse
factorization/solver for such systems, e.g. [5]. Certainly Cj must be sparse to allow for a
sparse factorization of the augmented system but there are no further restrictions on the
sparsity of Ck. The main drawback is dimension: the augmented system is of order m + n
and so the factorization can be expensive.

A Range-Space Approach: Consider a block reduction of the matrix in (5) to introduce a
zero “element” in the lower left block, i.e., position (2,1). This leads to the use of the
Schur-complement and ultimately,

(6) z=[Cit - CtAT(ACT ATY ACT Y.
If Cy = Li LT then (6) can be written!, z = L7TP, _» Li'r, where P, , _r is the orthogonal
P e FarpTle AL g

projector onto the null space of AL;T.
The computation of z, following (6), can be implemented as follows:

Algorithm Range-Project
1. Set Ay = ALY,

2. Solve Lyw = r, solve Lfv = w,
3. Solve Afu £ w, solve LTy = ATu,
4. Set z=v —y.

The remaining freedom, given Ly, is how to solve the least-squares problem in step 3,

fifu b w. Bearin mind that Algorithm Range-Project will be used several times each major

iteration, i.e., with fixed matrices 4, Ly. Therefore, a suitable factorization of A can be
performed once, each major iteration k, and the appropriate factors saved for subsequent
applications of Algorithm Range-Project within the major iteration. One possibility is to
compute a sparse @ R-factorization of A{, when Aj is formed, and save the factor R.
Numerous serial and parallel algorithms for computing a sparse () R-factorization exist,
e.g., [8, 13]. However, it is usually not feasible to explicitly compute or save Q. Therefore,
subsequent applications of Algorithm Range-Project, within a major iteration, may need to
rely on normal equations to do the least squares solve, step 3, using the upper-triangular
matrix Ry (saved from the sparse Q R-factorization of fi{) That is, solve Rkau = fikw;
the quality of the computed solution to this system can sometimes be improved with an
iterative refinement technique.

The effectiveness of this approach is correlated to the sparsity /structure of A which, in
turn, is affected by the choice of preconditioner Cj = LkLZ. If Cy is diagonal then Aj has

! For simplicity we supress the role of permutation matrices, typically used to reduce fill in sparse matrix
factorizations. In practise they are important and must be used. See George and Liu [7] or Duff, Erisman,
and Reid [6] for an introduction to this important area.
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the same sparsity as A; this choice yields the Carpenter/Shanno technique [1], used within
an interior-point method for positive definite quadratic programming. Of course restricting
the preconditioner to be diagonal is limiting — in some cases a diagonal preconditioner may
not be effective. This leaves us with a challenge: How can we choose a preconditioner
Cr = LkLT,;T so that C is both an effective preconditioner and yet the sparsity/structure of
Ay = AL;" is acceptable?

A Null-Space Approach: If the columns of Z € Rx(»=m) form a basis for the null space of
A the vector z can be computed by solving,

(7 (2TCv2)z = ZTr

and then assigning z = ZZ. Equation (7) can be solved, for example, using either a

sparse Cholesky factorization of ZTCZ or using a least-squares computation: Ziz b L;lr,
where Z; = L%Z, i.e., Zi is a basis for the null space of AL;T. Note that Z need be
computed only once for the entire minimization process. The challenge of this approach is
the determination of a sparse matrix Z such that the solution of (7) is economical. This is
similar to our original difficulty with (4) except in this case we have additional flexibility -
the choice of the structure of matrix Cy.

3 Non-negativity Constraints
The preconditioning ideas described above can also facilitate the solution of large-scale
versions of (2).

If the current z-iterate is strictly feasible, it is possible to differentiate the complemen-
tary slackness condition for problem (2) to obtain an approximate Newton system. The
complementary slackness condition for (2) can be written g.*z = 0, where g = Vf + AT,
A is a vector of “multiplier estimates”, and ¢ .#” indicates component-wise multiplication.
Assume zj is a (strictly) feasible point in a neighbourhood of a non-degenerate optimal
point. Taking into account the strict “sign-condition” that must hold at a non-degenerate
optimal point, i.e., z; = 0 = g; > 0, then differentiation of the complementary slackness
condition, along with Ap = 0, leads to system (4) with

(8) Hi = V?f(z) + diag(|gx| -/ x)-

In (8), “./” indicates component-wise division and |g| is the vector satisfying |gx|; = [(gx):l-
After (approximately) solving (4), using the definitions of Hy and gi above, assign p = Zp.
(To update z; and remain feasible it is necessary to introduce a line search parameter aj
such that 441 = zx + axpr > 0 and i — 1 sufficiently fast [2, 3].)

How can we effectively use the projected preconditioning ideas discussed above to
compute pg, when it is clear that Hy, as defined in (8), is unbounded as zx — z.7 A
good answer is to define a preconditioner that isolates the source of the ill-conditioning,
and then apply Algorithm PPCG. For example, let Cj = D;lékD;1 where D? = diag(zy)
and Cy = f,kf,z is a sparse positive definite approximation to

My = DiV? f(24) Dy + diag(|gx])-

Note that matrix My is well-behaved: as {23} — z., where z, is a strong local minimizer
of (2), {||Mk||} is bounded; the reduction of M} to the null space of A is positive definite for
all k sufficiently large. Finally, we remark that under reasonable assumptions, Algorithm
PPCG can be used, in conjunction with a line step procedure, described in [2, 3], to generate
a strictly feasible sequence {z;} converging to z, with a local superlinear rate.
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4 Concluding Remarks

In summary, algorithm PPCG allows for the direct application of preconditioned conjugate
gradient ideas to large-scale linearly constrained optimization, including problems with
non-negativity constraints. Considering the three main approaches to (5), there does
not appear to be an overall “best way”. The Full-Space Approach is probably the most
robust and is the most lenient with respect to the choice of C; however, it requires the
factorization of a matrix of order m + n. The Range-Space Approach can work well when
a diagonal preconditioner Cy is effective. Other choices of preconditioner for the Range-
Space Approach are possible but the sparsity of AL;T must be controlled. The Null-Space
Approach requires that Ci and Z be chosen so that both Z and ZTCZ are sparse, and of
course C; must be effective as a preconditioner: Algorithms are needed.
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